Suppression of thermosensitive initiation of DNA replication in a dnaR mutant of Escherichia coli by a rifampin resistance mutation in the rpoB gene.
نویسنده
چکیده
The thermosensitivity of the Escherichia coli dnaR130 mutant in initiation of DNA replication was suppressed by a spontaneous rifampin resistance mutation in rpoB, the gene for the beta subunit of RNA polymerase. Among the dnaR-suppressing rpoB alleles obtained was rpoB22, which was able to suppress the thermosensitivity of the dnaA46 or dnaA167 mutant, but not that of the dnaA5 mutant, in initiation of replication. Some dnaA-suppressing rpoB alleles obtained from rifampin-resistant derivatives of the dnaA mutants were able to suppress the dnaR defect. The dnaR mutant with the rpoB22 allele was deprived of thermoresistance by the dnaA5 mutation and of viability at low and high temperatures by the dnaA46 but not the dnaA167 mutation. The results show that the rpoB-mediated suppression of the dnaA or dnaR defect depends on the functions of both dnaA and dnaR products. I propose that the dnaR product has a key role in transcriptional activation of the replication origin for the dnaA-dependent initiation of DNA replication.
منابع مشابه
The involvement of mutation in the serine 83 of quinolone resistant determining regions of the GyrA Gene in resistance to ciprofloxacin in Escherichia coli .
Appearance of bacteria resistant to antibacterial agents puts physicians in trouble and threatens the health of the world. The rapid development of bacterial resistance in Escherichia coli to ciprofloxacin makes difficult the treatment of infectious diseases. So, detection of the locations of possible mutations in gyrase A gene ( gyrA ) in these mutants is very important to determine the mech...
متن کاملStudy of Mutations in the DNA gyrase gyrA Gene of Escherichia coli
Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...
متن کاملStudy of Mutations in the DNA gyrase gyrA Gene of Escherichia coli
Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...
متن کاملConstruction of an iss deleted mutant strain from a native avian pathogenic Escherichia coli O78: K80 and in vitro serum resistance evaluation of mutant
BACKGROUND: Colibacillosis, caused by different serotypes of avian pathogenic Escherichia coli (APEC), is one of the important diseases in poultry industry. The isolate O78 is the most prevalent serotype of APEC in Iran. One of the APEC virulence factors, increased serum survival (iss) gene, is related to serum resistance. The usual form of colibacillosis in avian is extraintestinal, and serum ...
متن کاملHigh frequency of mutations in gyrA gene associated with quinolones resistance in uropathogenic Escherichia coli isolates from the north of Iran
Objective(s): Regarding the global burden of uropathogenic Escherichia coli (UPEC) infections, prevention and treatment of such infections play a significant role in healthcare management. The inordinate use of fluoroquinolones led to a worldwide spread of quinolone-resistant strains. Therefore, this study aimed to investigate mutations in codons 83 and 106 of gyrA gene in UPEC isolates in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 177 3 شماره
صفحات -
تاریخ انتشار 1995